Quiz I: Math. for the Architects, MTH 111, Spring 2017
Ayman Badawi
QUESTION 1. Consider the Ellipse $\frac{(x+2)^{2}}{25}+\frac{(y-4)^{2}}{169}=1$
2 (i) Sketch (rough sketch)
$\left(\frac{k}{2}\right)^{2}$

$$
\begin{gathered}
\left(\frac{k}{2}\right)^{2}=169 \\
\frac{k}{2}=13 \\
c(-2 ;+4) \\
b^{2}=25 \\
b=5 .
\end{gathered}
$$

(iv) Find all 4 vertices.
(ii) Find the Fort

$$
\begin{aligned}
& { }_{F}(-2 ; 16) \checkmark \\
& f_{2}(-2 ;-8)
\end{aligned}
$$

$$
\begin{gathered}
h_{2}^{2} p^{2}=s^{2} d e^{2}+s i d e^{2} \\
169=25+\left|F_{1} C\right|^{2} \\
\left.\left|F_{1}\right|\right|^{2}=144 . \\
\mid F_{1} C=12
\end{gathered}
$$

(iii) Find the ellipse-contant h

$$
c(-2 ;+4) \quad 169=25+\left|F_{i} C\right|^{2}
$$

$$
k=26
$$

$$
b^{2}=25 . \quad|f, C|^{2}=144
$$

$$
v_{3}(-7 ; 4), v_{1} ;(4) \quad v_{1}(-2 ; 17) v_{2}(-2 ;-9)
$$

QUESTION 2. Given (-3.5) is the focus of a parabola l with directrix lithe $x=0$.
(i) Sketch (rough sketch)
(ii) Find the equation of the Parabola.
eq: $4 d\left(x-x_{1}\right)=\left(y-y_{1}\right)^{2}$.
midpt of $|F P|$ is the vertix.

$$
\begin{aligned}
& x_{V}=\frac{x_{F}+x_{B}}{2}=-\frac{3+9}{2}=3 . \\
& |F V|=|V B|=|d|=|\Delta x|=|-3-3|=|-6|=6 .
\end{aligned}
$$ $d \leq 0$

$d=-6$
$-6)(x-3)=(y-5)^{2}$
$4(x-3)=(4-5)^{2}$
Faculty information

$$
\begin{aligned}
& B(9 ; 5) \text {. } \\
& \text { L sinceon the } \\
& \text { left side } \\
& \Rightarrow d<0 . \\
& d=-6 .
\end{aligned}
$$

iii) find the distance between fertix and directrix.

$$
|v B|=\sqrt{\Delta x^{2}}=|\Delta x|=|9-3|=6
$$

Quiz II: MTH 111,Fall 2017
Ayman Badawi
QUESTION I. Let $V=<8,-15>$ and $I V=<-3.4>$.
(i) Draw V and W^{\prime} in the N°-plane (start from $(0,0)$).

(ii) Find V. If

$$
\begin{aligned}
& (-3)(8)+(4)(-15) \\
& =-84
\end{aligned}
$$

(iii) Find $T T$ and $|i t|$
2. $\quad|W|=\sqrt{(-3)^{2}+(-15)^{2}}=172$
(iv) Find the angle between V and W^{-}

$$
\begin{aligned}
\cos \theta & =\frac{a \cdot b}{|a||b|} \\
& =-84 \\
L & \cos ^{-1}\left(-\frac{84}{85}\right)=-\frac{171 \cdot 2^{\circ}}{\square}
\end{aligned}
$$

QUESTION 2. Given $\frac{x^{2}}{144}-\frac{(y-2)^{2}}{25}=1$
(i) Sketch (roughly)

(ii) Find the Hyperbola -Constant k

(iii) Find the two vertices, ie., V_{1}, V_{2}

$$
\begin{aligned}
& \text {) Find the two vertices, i.e... } V_{1}, V_{2} \\
& V_{1}=(0-12,2) \quad \underline{V_{1}}=(-12,2)
\end{aligned}
$$

$$
v_{2}=(0+12,2) \quad \overline{v_{2}}=(12,2)
$$

(iv) Find the loci, ie., F_{1}, F_{2}

$$
\begin{array}{rlrl}
\left|C F_{1}\right| & =\sqrt{\left(\frac{k}{2}\right)^{2}+b^{2}} \\
& =\sqrt{144+25}=13 \\
& F_{1} & =(0-13,2) \quad & \quad F_{1}=(-13,2) \\
F_{2} & =(0+13,2) \quad & F_{2}=(13,2)
\end{array}
$$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, R.O. Box 26666, Shariah, United Arab Emirates.
Email: abadawi@aus.edu, w ur ayman-badawi.com
i.) a)

$$
\operatorname{prog}_{v}^{w}=\overrightarrow{B O}
$$

Qum IH STIT E1I, Fall 2017 ban Badawi

QI. $V=A B, W=13 C$. (note, $1 B$ is a forisontal directed line segment)
ai) Draw the projection sector of W over V

Q2. $V=\langle-3,-4,0\rangle . W=\langle .2,1,2\rangle$.
a) Find the projection sector of W over V, name it f?

$$
\begin{aligned}
P=\text { prog: }_{V}^{w} & =\frac{W \cdot V}{|V|^{2}} V \\
& =\frac{6-4+0}{25}\langle-3,-4,0\rangle=\frac{2}{25}\langle-3,-4,0\rangle \\
& =\left\langle\frac{-6}{25}, \frac{-8}{25}, 0\right\rangle
\end{aligned}
$$

$$
|P|=\left|\operatorname{peg}_{1} v\right|=\frac{|W \cdot V|}{|V|}=\frac{2}{\sqrt{25}}=\frac{2}{5} / /
$$

3
c) Find wo vectors L, and U such that $W=U+I$. where L is parallel to V and u is perpendicular to V .

$$
\begin{aligned}
& W=u+L \\
& \vec{L}=\overrightarrow{O Q}=\text { proc } \mathrm{V} \\
& \begin{aligned}
U & =\frac{W \cdot V}{|V|^{2}} V(\text { from 2.)a. }) \\
& =\left\langle-\frac{6}{25},-\frac{8}{25}, 0\right\rangle
\end{aligned} \\
& \vec{U}=W-L \\
& =\langle-2,1,2\rangle+\left\langle\frac{+6}{25}, \frac{+8}{25}, 0\right\rangle \\
& =\left\langle-\frac{44}{25}, \frac{33}{25}, 2\right\rangle \\
& \langle-3,-4,0\rangle \text {. } \\
& \left\langle-\frac{414}{25}, \frac{33}{25}, 2\right\rangle \\
& -2+\frac{6}{25} \\
& -\frac{50+6}{25}=-44 \\
& =\frac{14}{25} \\
& -4 \times 33 \\
& =\frac{132}{25}-\frac{132}{25}=0 / 1
\end{aligned}
$$

Quiz Four: MTH 111, Fall 2017
Ayman Badawi

QUESTION 1. Find a parametric equations of the line that passes through (1,6,9) and ($0,4,-1$)
${ }^{(1)} L_{D}:\langle 0-1,4-6,-1-9\rangle$ (2)

$$
\begin{aligned}
L & :(1,6,9)++\langle-1,-2,-10\rangle \\
& =(1+-t, 6+-2 t, 9+-101) \\
& =\left[\begin{array}{l}
x=1-t \\
y=6-2 t \\
z=9-10 t
\end{array}\right]+=\mathbb{R} \text { }
\end{aligned}
$$

QUESTION 2. Find a parametric equations of the line that has directional vector $D=<3,-4.8 \geq$ and it passes through (2, -6, 7)

$$
L:(2,-6,7)+t\langle 3,-4,8\rangle
$$

$$
=(2+3 t,-6+-4 t, 7+8 t)
$$

$$
\left[\begin{array}{l}
x=2+3 t \\
y=-6-4 t \\
z=7+8 t
\end{array}\right.
$$

$$
t=\mathbb{R}
$$ ($w \in R$)? If yes, then find the intersection point.

Faculty information

CHECK: 2 of $L_{1}=2$ OF L_{2}

$$
\left.\begin{array}{rl}
3 t+2 & \stackrel{?}{=} 4 \omega+6 \\
(3)(4)+2 & =4(2)+6
\end{array}\right)^{14}=14
$$

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates.
Email: abadarieaus .du, wrurayman-badawi .com
(2) L_{1} INTERSECT L_{2}
YES!

$$
\begin{aligned}
& \left.\begin{array}{l}
L: \\
x=2 t+1 \\
y=-4 t+6 \\
z=3 t+2
\end{array}\right] t=\mathbb{R} \\
& L_{2}: \\
& \left.\begin{array}{l}
x=4 \omega+1 \\
y=\omega-12 \\
z=4 \omega+6
\end{array}\right] \omega=1 R \quad \begin{array}{c}
-4 t-\omega=-12-6 \\
\downarrow \\
2+-4 \omega=0 \\
-4 t-\omega=-18
\end{array} \\
& 2 t+1=4 \omega+1 \\
& -4++6=\omega-12 \\
& 2 t-4 \omega=1-1 \\
& t=\frac{0-(72)}{-2-(16)} \\
& \omega=\frac{-36-0}{-2-16} \\
& t=\frac{-72}{-18} \\
& \omega=\frac{-36}{-18} \\
& t=4 \\
& \omega=2
\end{aligned}
$$

Quiz 6: MTH 111, Fall 2017

Amman Badawi
QUESTION 1. Let $Q_{1}=(1,3,4), Q_{2}=(-4,1,8)$, and $Q_{3}=(-3,4,10)$.
a) Are Q_{1}, Q_{2}, Q_{3} collinear? EXPLAIN
$\overrightarrow{Q_{1} Q_{2}}=\langle-5,-2,4\rangle$
$\overrightarrow{Q_{1} Q_{3}}=\langle-4,1,6\rangle$
$\overrightarrow{Q_{1} Q_{2}} \times \overrightarrow{Q_{1} Q_{3}}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ -5 & -2 & 4 \\ -4 & 1 & 6\end{array}\right|$
$\vec{Q}_{1} Q_{2} \times \vec{Q}_{1} Q_{3}=-2(6)$

$$
B
$$

$$
Q_{1} Q_{2} \times Q_{1} Q_{3}=-2(6)-1(4) \hat{i}+14 \hat{j}-13 \hat{k}
$$

\rightarrow They are not collinear because $Q_{1} Q_{2} Q_{1} Q_{3}=-16 \hat{i}+14 \hat{j}-13 \hat{k}$ a zero vector. b) If the answer in (a) is NO, then find the area of the triangle determined by Q_{1}, Q_{2}, Q_{3}.

$$
\begin{aligned}
& \text { Area } \Delta=\frac{1}{2}\left|\vec{Q}_{1} Q_{2} \times \vec{Q}_{1} Q_{3}\right| \\
& \text { Area } \Delta=\frac{1}{2} \sqrt{16^{2}+14^{2}+13^{2}}=\frac{3 \sqrt{69}}{2} \text { units }^{2}
\end{aligned}
$$

c) Let $L: x=0 t+1, y=(-4 t+5, z=2 t+7(t \in R)$. Then the points $Q=(1,3,6)$ is not on L. Find $|Q L|[$ You must use the idea of CROSS PRÓDUCT to find $|Q L|$ as we did on Tuesday.]

$$
D=\langle 2,-4,2\rangle
$$

$\langle 0,-2,-\rangle=\rangle_{B}^{Q}$

$$
\left.\begin{aligned}
& |\overrightarrow{B Q}|=\frac{|W \times D|}{\hat{i}}=\frac{\sqrt{8^{2}+2^{2}+4^{2}}}{\sqrt{2^{2}+4^{2}+2^{2}}}=\frac{\sqrt{14}}{2}\left|\begin{array}{cc}
\hat{j} & \hat{k} \\
0 & -2
\end{array}-1\right|=-8 \hat{i}-2 \hat{j}+4 \hat{k} \\
& 2-4
\end{aligned} \right\rvert\,
$$

d) Let L_{1} be the same L as in (c). Let $L_{2}: x=w+1, y=-3 w+2, z=w+4(w \in R)$. Convince me that L_{1} is not parallel to L_{2}.
$L_{1}:\left\{\begin{array}{l}x=2 t+1 \\ y=-4 t+5, t \in \mathbb{R} \\ Z=2 t+7\end{array} \rightarrow D_{1}=\langle 2,-4,2\rangle\right.$
$L_{2}:\left\{\begin{array}{l}x=w+1 \\ y=-3 w+2 ; w \in \mathbb{R} \\ z=w+4\end{array} \rightarrow D_{2}=\langle 1,-3,1\rangle\right.$
D_{1} is not parallel to D_{2} (directional

Faculty information

 \Rightarrow The lines are not parallel rectors are notAyman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Shariah, United Arab Emirates. Pale/)
Email: abadawi@aus.edu, uws.ayman-badawi.com

Quiz 7: MTH 111, Fall 2017
Amman Badawi

QUESTION 1. Let $Q_{1}=(1,0,2), Q_{2}=(-2,0,2), Q_{3}=(1,2,6)$. Find the equation of the plane determined by

$$
\begin{array}{lc}
\overrightarrow{Q_{1} Q_{2}}=\langle-3,0,0\rangle & P \rightarrow\langle 0,12,-6\rangle,\langle x-1, y-0, z-2\rangle=0 \\
\overrightarrow{Q_{1} Q_{3}}=\langle 0,2,4\rangle & 0(x-1)+12(y-0)+-6(z-2)=0 \\
N=\overrightarrow{Q_{1} Q_{2}} \times \overrightarrow{Q_{1} Q_{3}} & 0 x+12 Y-6 z+12=0 \\
=\left|\begin{array}{ccc}
i & k \\
-3 & 0 & 0 \\
0 & 2 & 4
\end{array}\right| & 12 y-6 z+12=0 \\
1001 . & 1-301: 1-301 n
\end{array}
$$

$=\left|\begin{array}{ll}0 & 0 \\ 2 & 4\end{array}\right| i-\left|\begin{array}{cc}-3 & 0 \\ 0 & 4\end{array}\right| j+\left|\begin{array}{cc}-3 & 0 \\ 0 & 2\end{array}\right| k$
$=(0-0) i-(-12-0) j+(-6-0) k=0 i+12 j-6 k=\langle 0,12,-6\rangle$
QUESTION 2. The plane $x+2 y+3 z=26$ intersects the line $L: x=t, y=t+1, Z=3 t(t \in R)$ in exactly one point, say Q. Find Q.
$P_{1} \rightarrow x+2 y+3 z=26$

$$
\begin{aligned}
& t+2(t+1)+3(3 t)=26 \\
& t+2 t+2+9 t=26 \\
& \equiv 12 t+2=26 \\
& \frac{12 t}{12}=\frac{264}{12} \rightarrow t=52
\end{aligned}
$$

QUESTION 3. a) The plane $2 x+4 y+6 z=18$ is parallel to the plane in question (2). Find the distance between the two planes.
$P_{1} \rightarrow x+2 y+3 z=26$

$$
\begin{aligned}
\left|P_{3} P_{1}\right|-\left|Q P_{1}\right| & =\frac{\left|Q N E_{1}\right|}{\left|N_{1}\right|} \\
& =\frac{|0+2(0)+3(6)-26|}{\sqrt{1^{2}+2^{2}+3^{2}}}
\end{aligned}
$$

$P_{2} \rightarrow 2 x+4 y+6 z=18$
$P_{1} \| P_{2}$
$N_{1} \rightarrow\langle 1,2,3\rangle$
$E_{1} \rightarrow X+2 Y+3 z-26$
$=\frac{|9-26|}{\sqrt{1+4+9}}=\frac{|-17|}{\sqrt{14}}=\frac{17}{\sqrt{14}}$ $a \rightarrow(0,0,3)$
$L \rightarrow x=+$
$\left.\begin{array}{l}x=t \\ y=+t 1 \\ z=3 t\end{array}\right] t=\mathbb{R}$

Quiz 8: MTH 111, Fall 2017

$\operatorname{cic}_{2}^{6 x}$ A
QUESTION 1. Let $f(x)=2 x^{3}+3 x^{2}-36 x+1$
(i) Find the critical values of $f(x)$

$$
\begin{aligned}
& g^{\prime}(x)=6 x^{2}+6 x-36 \\
& 0=6 x^{2}+6 x-36 \\
& 0=6\left(x^{2}+x-6\right)
\end{aligned}
$$

4

$$
\begin{aligned}
& x=2 \\
& x=-3
\end{aligned}
$$

(ii) Find the equation of the tangent to the curve of $f(x)$ at each critical value of $f(x)$, The line is $\mathrm{y}=-43$

$$
\begin{aligned}
f(2) & =2(2)^{2}+3(2)^{2}-36(2)+1 \\
& =-43 \\
f(-3) & =2(-3)^{3}+3(-3)^{2}-36(-3)+1
\end{aligned} \quad \rightarrow \text { The line is } y=82
$$

(iii) Find the sign of $f^{\prime}(x)$ and then $=82$

a. For what values of x does $f(x)$ increase?

$$
8(x) \text { increases at }(-\infty,-3) \cup
$$

$$
\begin{aligned}
f^{\prime}(-5) & =6(-5)^{2}+6(-5)-36 \\
& =+84 \\
f^{\prime}(0) & =6(0)^{2}+6(0)-36 \\
& =-36 \\
f^{\prime}(4) & =6(4)^{2}+6(4)-36 \\
& =+84
\end{aligned}
$$

$$
f(x) \text { deceases ar }(-3,2)
$$

c. Find the local min, and local max. values of $f(x)$
max value of $f(x)$ or of y is 82 and it occurs when $x=-3$
$f(2)=-43 \rightarrow$ local Min $(2,-43)$

Min. value of $f(x)$ or of y is -43 and it occurs when $x=2$

Faculty information

Quiz 9: MTH 111, Fall 2017
Ayman Badawi

QUESTION 1. Find $f^{\prime}(x)$

(i) $f(x)=\sqrt{3 x}+2 x+3$.
$f(x)=(3 x)^{\frac{1}{2}}+2 x+3$

$f^{\prime}(x)=\frac{\sqrt{3}}{2 \sqrt{x}}+2$
(ii) $f(x)=\left(2^{2}+x\right)^{5}+\frac{3}{x^{4}}+4 x+2 ; f(x)=(2+x)^{5}+3 x^{-7}+4 x+2$
$f^{\prime}(x)=5(2+x)^{4}-21 x^{-8}+4$
$f^{\prime}(x)=5(2+x)^{4}-\frac{21}{x^{8}}+4$? 17
(iii) Given $f(x)=k\left(2 x^{3}+x\right)$ and $\overline{x^{3}(3)}+4$. Find $f^{\prime}(1)$.

$$
\begin{aligned}
& f^{\prime}(x)=\left(6 x^{2}+1\right) k^{\prime}\left(2 x^{3}+1\right) \\
& f^{\prime}(1)=7 k^{\prime}(3)=7(-4)=-28
\end{aligned}
$$

$$
\begin{gathered}
f^{\prime}(x)=k^{\prime}\left(2 x^{3}+x\right)\left(6 x^{2}+1\right) \\
k^{\prime}(3)(7)= \\
-4(7)=-28
\end{gathered}
$$

Find the length and the width of the rectangle with maximum area and it can be drawn
between $f(x)=x^{\wedge} 2-6$ and
$g(x)=2 \cdot x^{\wedge} 2$. (see picture)

QUESTION 2.

$$
\text { (4) } A^{\prime \prime}=-24 a
$$

Faculty information

$$
\begin{aligned}
& A=16 a-4 a^{3} \\
& A^{\prime}=16-12 a^{2} \\
& A^{\prime}=0 \\
& 16=12 a^{2} \quad \text {, } \\
& a^{2}=\frac{16}{12} \\
& a= \pm \sqrt{\frac{4}{3}} \quad a>0 \\
& \Rightarrow a=\sqrt{\frac{4}{3}} \\
& A^{\prime \prime}=-24 \sqrt{\frac{4}{3}}<0 \\
& \Rightarrow \text { The Area is } \\
& \text { maximum. fats } \\
& \text { when } x= \pm \sqrt{\frac{4}{3}} \text {. } \\
& \text { The } \operatorname{tength}=\overline{A B}= \\
& \begin{array}{l}
2 \sqrt{\frac{4}{3}}=\frac{4 \sqrt{3}}{3} \\
\text { The width } \overline{B C}= \\
8-2\left(\frac{4}{3}\right)=
\end{array}
\end{aligned}
$$

Ayman Badawi, Department of Mathematics \& \$tatistics,
E-mail: abadawi@aus .educ, www ayman-badavi com
E-mail: abadawi@aus.edu, www ayman-badavi.com

$$
8-\frac{8}{3}=\frac{16}{3}
$$

